Inverses of Infinite Sign Regular Matrices
نویسندگان
چکیده
منابع مشابه
Inverses of Infinite Sign Regular Matrices' by C. De Boor, S. Friedland and A. Pinkus
Let A be an infinite sign regular (sr) matrix which can be viewed as a bounded linear operator from lx to itself. It is proved here that if the range of A contains the sequence (...,1,-1,1,-1,...), then A is onto. If A'' exists, then DA~'D is also sr, where D is the diagonal matrix with diagonal entries alternately 1 and -1. In case A is totally positive (tp), then DA~]D is also tp under additi...
متن کاملInverses of regular Hessenberg matrices
A new proof of the general representation for the entries of the inverse of any unreduced Hessenberg matrix of finite order is found. Also this formulation is extended to the inverses of reduced Hessenberg matrices. Those entries are given with proper Hessenbergians from the original matrix. It justifies both the use of linear recurrences for such computations and some elementary properties of ...
متن کاملInverses of k-Regular Interval-Valued Fuzzy Matrices
In this paper, we discuss various k-g inverses associated with a k-regular Interval-Valued Fuzzy Matrix. We obtain some characterization of the set of all k-g inverses.
متن کاملAccurate eigenvalues of certain sign regular matrices
We present a new O(n3) algorithm for computing all eigenvalues of certain sign regular matrices to high relative accuracy in floating point arithmetic. The accuracy and cost are unaffected by the conventional eigenvalue condition numbers. A matrix is called sign regular when the signs of its nonzero minors depend only of the order of the minors. The sign regular matrices we consider are the one...
متن کاملE-Clean Matrices and Unit-Regular Matrices
Let $a, b, k,in K$ and $u, v in U(K)$. We show for any idempotent $ein K$, $(a 0|b 0)$ is e-clean iff $(a 0|u(vb + ka) 0)$ is e-clean and if $(a 0|b 0)$ is 0-clean, $(ua 0|u(vb + ka) 0)$ is too.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1982
ISSN: 0002-9947
DOI: 10.2307/1999495